有理数的加减混合运算法则
有理数的加减混合运算法则
1.有理数的加法法则
⑴同号两数相加,取相同的符号,并把绝对值相加;
⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
⑶互为相反数的两数相加,和为零;
⑷一个数与零相加,仍得这个数。
2.有理数加法的运算律
⑴加法交换律:a+b=b+a
⑵加法结合律:(a+b)+c=a+(b+c)
在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律:
①互为相反数的两个数先相加——“相反数结合法”;
②符号相同的两个数先相加——“同号结合法”;
③分母相同的数先相加——“同分母结合法”;
④几个数相加得到整数,先相加——“凑整法”;
⑤整数与整数、小数与小数相加——“同形结合法”。
3.加法性质
一个数加正数后的和比原数大;加负数后的和比原数小;加0后的和等于原数。即:
⑴当b>0时,a+b>a
⑵当b<0时,a+b<a
⑶当b=0时,a+b=a
4.有理数减法法则
减去一个数,等于加上这个数的相反数。用字母表示为:a-b=a+(-b)。
5.有理数加减法统一成加法的意义
在有理数加减法混合运算中,根据有理数减法法则,可以将减法转化成加法后,再按照加法法则进行计算。
在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式。如:
(-8)+(-7)+(-6)+(+5)=-8-7-6+5.
和式的读法:①按这个式子表示的意义读作“负8、负7、负6、正5的和”
②按运算意义读作“负8减7减6加5”
6.有理数加减混合运算中运用结合律时的一些技巧:
Ⅰ.把符号相同的加数相结合(同号结合法)
(-33)-(-18)+(-15)-(+1)+(+23)
原式=-33+(+18)+(-15)+(-1)+(+23)加减符号
(将减法转换成加法)
=-33+18-15-1+23
(省略加号和括号)
=(-33-15-1)+(18+23)
(把符号相同的加数相结合)
=-49+41
(运用加法法则一进行运算)
=-8
(运用加法法则二进行运算)
Ⅱ.把和为整数的加数相结合(凑整法)
(+6.6)+(-5.2)-(-3.8)+(-2.6)-(+4.8)
原式=(+6.6)+(-5.2)+(+3.8)+(-2.6)+(-4.8)
(将减法转换成加法)
=6.6-5.2+3.8-2.6-4.8
(省略加号和括号)
=(6.6-2.6)+(-5.2-4.8)+3.8
(把和为整数的加数相结合)
=4-10+3.8
(运用加法法则进行运算)
=7.8-10
(把符号相同的加数相结合,并进行运算)
=-2.2
(得出结论)
Ⅲ.把分母相同或便于通分的加数相结合(同分母结合法)
--+-+-
原式=(--)+(-+)+(+-)
=-1+0-
=-1
Ⅳ.既有小数又有分数的运算要统一后再结合(先统一后结合)
(+0.125)-(-3)+(-3)-(-10)-(+1.25)
原式=(+)+(+3)+(-3)+(+10)+(-1)
=+3-3+10-1
=(3-1)+(-3)+10
=2-3+10
=-3+13
=10
Ⅴ.把带分数拆分后再结合(先拆分后结合)
-3+10-12+4
原式=(-3+10-12+4)+(-+)+(-)
=-1++
=-1++
Ⅵ.分组结合
2-3-4+5+6-7-8+9…+66-67-68+69
原式=(2-3-4+5)+(6-7-8+9)+…+(66-67-68+69)
=0
Ⅶ.先拆项后结合
(1+3+5+7…+99)-(2+4+6+8…+100)
有理数的乘除法
1.有理数的乘法法则
法则一:两数相乘,同号得正,异号得负,并把绝对值相乘;(“同号得正,异号得负”专指“两数相乘”的情况,如果因数超过两个,就必须运用法则三)
法则二:任何数同0相乘,都得0;
法则三:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,
积是负数;
法则四:几个数相乘,如果其中有因数为0,则积等于0.
2.倒数
乘积是1的两个数互为倒数,其中一个数叫做另一个数的倒数,用式子表示为a·=1(a≠0),就是说a和互为倒数,即a是的倒数,是a的倒数。

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。