2022—2023年人教版八年级数学(下册)期末试卷及答案(一套)
班级: 姓名:
一、选择题(本大题共10小题,每题3分,共30分)
1.-2019的相反数是( )
A.2019 B.-2019 C. D.
2.下列各数中,,无理数的个数有( )
A.1个 B.2个 C.3个 D.4个
3.已知,则的值是( )
A.9 B.8 C. D.
4.已知一个多边形的内角和等于900º,则这个多边形是( )
A.五边形 B.六边形 C.七边形 D.八边形
5.一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为( )
A.(﹣5,3) B.(1,﹣3) C.(2,2) D.(5,﹣1)
6.如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是( )
A.2 B.3 C.5 D.6
7.如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则▱ABCD的周长为( )
A.6 B.12 C.18 D.24
8.如图,在平行四边形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE,BF相交于H,BF与AD的延长线相交于点G,下面给出四个结论:①; ②∠A=∠BHE; ③AB=BH; ④△BCF≌△DCE, 其中正确的结论是( )
A.①②③ B.①②④ C.②③④ D.①②③④
9.如图,在下列条件中,不能证明△ABD≌△ACD的是( ).
A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DC
C.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC
10.如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是( )
A.10 B.14 C.20 D.22
二、填空题(本大题共6小题,每小题3分,共18分)
1.已知,则=_______.
2.若关于x、y的二元一次方程3x﹣ay=1有一个解是,则a=_____.
3.计算的结果是________.
4.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点处,当为直角三角形时,BE的长为______。
5.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有__________对全等三角形.
6.如图,在平行四边形ABCD中,DE平分∠ADC,AD=6,BE=2,则平行四边形ABCD的周长是________.
三、解答题(本大题共6小题,共72分)
1.解分式方程:﹣1=.
2.先化简,再求值:(x+2)(x-2)+x(4-x),其中x=.
3.已知关于x的方程.
(1)当该方程的一个根为1时,求a的值及该方程的另一根;
(2)求证:不论a取何实数,该方程都有两个不相等的实数根.
4.如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.
(1)求证:四边形OCED是矩形;
(2)若CE=1,DE=2,ABCD的面积是 .
5.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C八年级下册数学期末试卷及答案,AF与DE交于点O.
(1)求证:AB=DC;
(2)试判断△OEF的形状,并说明理由.
6.为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.
(1)求购买A型和B型公交车每辆各需多少万元?
(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论