人教版八年级数学下册期末复习专题训练——图形变换(含答案)
人教版八年级数学下册期末复习专题训练——图形变换
一.典例讲解:
例题:已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于点E,交BC边于点F,分别连接AF和CE.
(1)求证:四边形AFCE是菱形;
(2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长.
八年级下册数学期末试卷及答案
解:(1)∵四边形ABCD是矩形,
∴AD∥BC,
∴∠EAO=∠FCO,
由折叠的性质可得:OA=OC,AC⊥EF,
在△AOE和△COF中,
∵,
∴△AOE≌△COF(ASA),
∴AE=CF,
∴四边形AFCE是平行四边形,
∵AC⊥EF,
∴四边形AFCE是菱形;
(2)∵四边形AFCE是菱形,
∴AF=AE=10cm,
∵四边形ABCD是矩形,
∴∠B=90°,
∴S△ABF=AB•BF=24cm2,
∴AB•BF=48(cm2),
∴AB2+BF2=(AB+BF)2﹣2AB•BF=(AB+BF)2﹣2×48=AF2=100(cm2),
∴AB+BF=14(cm)
∴△ABF的周长为:AB+BF+AF=14+10=24(cm
二.对应训练:
1.如图所示,矩形纸片ABCD中,已知AD=8,如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边于对角线AC重合,点B落在点F处,且EF=3,求AB的长
2.如图,一块矩形纸片的宽CD为2cm,点E在AB上,如果沿图中的EC对折,B点刚好落在AD上,此时∠BCE=15°,求BC的长
3.如图,直线y=﹣x+8与x轴、y轴分别相交于点A、B,设M是OB上一点,若将△ABM沿AM折叠,使点B恰好落在x轴上的点B′处.求:
(1)点B′的坐标;
(2)直线AM所对应的函数关系式.
4.如图,直线l与坐标轴分别交于A、B两点,∠BAO=45°,点A坐标为(8,0).动点P 从点O出发,沿折线段OBA运动,到点A停止;同时动点Q也从点O出发,沿线段OA 运动,到点A停止;它们的运动速度均为每秒1个单位长度.
(1)求直线AB的函数关系式;
(2)若点A、B、O与平面内点E组成的图形是平行四边形,请直接写出点E的坐标;
(3)在运动过程中,当P、Q的距离为2时,求点P的坐标.
5.已知,如图,矩形ABCD边AB=6,BC=8,再沿EF折叠,使D点与B点重合,C点的对应点为G,将△BEF绕着点B顺时针旋转,旋转角为a(0°<a<180°),记旋转这程中的三角形为△BE′F′,在旋转过程中设直线E′F′与射钱EF、射线ED分别交于点M、N,当EN=MN 时,求FM的长
6.如图,在平面直角坐标系xOy中,直线y=﹣x+8与x轴,y轴分别交于点A,点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.
(1)求AB的长和点C的坐标;
(2)求直线CD的解析式.
7.如图,把一张长方形纸条ABCD沿AF折叠.已知∠ADB=25°,AE∥BD,求∠BAF
8.如图,在平面直角坐标系xOy中,菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限内,对角线BD与x轴平行,直线y=x+3与x轴、y轴分别交于点E,F.将菱形ABCD沿x轴向左平移m(m>0)个单位,当点D落在△EOF的内部时(不包括三角形的边),求m的取值范围.
9.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.
(1)试出一个与△AED全等的三角形,并加以证明;
(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH 的值,并说明理由.
10.如图,在▱ABCD中,AB=5,AD=6,将▱ABCD沿AE翻折后,点B恰好与点C重合,求折痕AE的长
11.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=6,求BC的长.

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。