不同圈舍温度对肉牛生长性能、养分消化及血清参数的影响
气候变化预测表明,到2100年,全球环境温度预计将增加2.3~4.8℃,据估计,全球变暖会使热带和亚热带国家的动物产量减少25%,而这些国家的牛奶和肉类产量占全球总产量的50%以上(Seguin,2008)。在热带和亚热带国家,牛品种之间的杂交已被广泛采用,以提高牛奶和牛肉产量。Banerjee和Ashutosh(2011)报道,尽管杂交牛的生产性能更高,但由于环境温度升高,这些动物的相对健康和生产损失会更多。肠道发酵产甲烷与有机物发酵速率、产生的挥发性脂肪酸类型、微生物生物合成效率及细菌种类型有关(胡坤,2014)。奶牛每天甲烷排放量随奶牛活动量显著增加,但同时与室内空气温度呈负相关,同时,甲烷排放会造成能量损失(冯仰廉等,2012)。高环境温度条件下,反刍动物肠道运动、反刍、瘤胃收缩和食糜通过率是影响甲烷排放和养分消化吸收的主要因素之一,如Barnett等(2015)报道,羊的甲烷排放量与食糜平均滞留时间呈正相关,同时也受激素三碘甲状腺原氨酸的影响。Yadav 等(2013)报道了不同环境温度暴露对消化率的影响,但亚热带气候条件下对肉牛的研究数据有限。因此,考虑到全球变暖和我国区域环境温度差异,本研究旨在研究不同圈舍环境温度对肉牛生长性能、养分消化、生理参数及血清生化指标的影响。
1 材料与方法
1.1 试验设计 试验地点选为区鑫源肉牛养殖场,将36头体重为(230.22±0.79)kg的肉牛随机分为3组,每组4个重复,每个重复3头牛。T1、T2和T3组肉牛饲喂同一种全混合日粮,试验期间T1组圈舍温度控制在28.5℃,T2组圈舍温度控制在33.5℃,T3组圈舍温度控制在38.5℃,饲养试验为期8周。试
验期间圈舍温度控制采用全自动环控系统,所有动物均接种口蹄疫和出血性败血病疫苗,每头肉牛有单独的采食和饮水设施。
不同圈舍温度对肉牛生长性能、养分消化
及血清参数的影响
王致晶1,高海霞1,杨保田1,李高堂2
(1.甘肃省农业建设项目管理站,甘肃兰州 730046;2.区鑫源肉牛养殖场,甘肃定西 743011)
[摘要]文章旨在研究不同圈舍环境温度对肉牛生长性能、养分消化及血清生化指标的影响。试验将36头体重为(230.22±0.79)kg的肉牛随机分为3组,每组4个重复,每个重复3头牛。T1、T2和T3组肉牛饲喂同种全混合日粮,试验期间T1组圈舍温度控制在28.5℃,T2组圈舍温度控制在33.5℃,T3组圈舍温度控制在38.5℃,饲养试验为期8周。结果:T1组肉牛56 d的体重、20~56 d和1~56 d平均日增重较T3组分别显著提高3.92%、23.45%和13.58%(P<0.05)。T3组肉牛29~56 d料重比较T1和T2组分别显著提高22.32%和13.22%(P<0.05),同时,T3组肉牛1~56 d料重比较T1组显著提高12.69%(P<0.05)。T1组肉牛干物质、有机物和酸性洗涤纤维消化率较T3组分别显著提高8.02%、9.79%和8.32%(P<0.05),而T3组肉牛中性洗涤纤维消化率较T1组显著提高8.31%(P<0.05)。
T3组肉牛直肠温度、呼吸频率和脉搏均显著高于T1和T2组(P<0.05)。针对血清参数,T3组肉牛血清尿素氮、肌酸酐、甘油三酯浓度、乳酸脱氢酶、谷草转氨酶和谷丙转氨酶活性均显著高于T1组(P<0.05),而T1组肉牛血清甲状腺素浓度及碱性磷酸酶活性显著高于T3组(P<0.05)。结论:在本试验条件下,圈舍温度达到38.5℃会抑制肉牛生长后期日增重,降低饲料转化率,对生理参数和血清生化指标产生负面影响。
[关键词]温度;肉牛;生长性能;养分消化;血清参数
[中图分类号] S823        [文献标识码] A          [文章编号] 1004-3314(2021)10-0013-04 DOI:10.15906/jki11-2975/s.20211004
表1  试验全混合日粮组成及营养水平
感恩父母的小短句原料含量营养水平含量玉米/(g/kg)284干物质/%89.0
青贮玉米/(g/kg)80粗蛋白质/%13.5
小麦/(g/kg)120粗脂肪/%3.5
豆粕/(g/kg)100中性洗涤纤维/%25.0
面粉/(g/kg)40酸性洗涤纤维/%12.5
张陆老婆
麸皮/(g/kg)100
玉米蛋白粉/(g/kg)30
水稻秸秆/(g/kg)80
糖蜜/(g/kg)50
玉米DDGS/(g/kg)35
苜蓿草/(g/kg)50
食盐/(g/kg)6
石粉/(g/kg)15
预混料/(g/kg)10
注:预混料为每千克饲料提供含维生素A 400 kIU,维生素E 25 kIU,维生素D3 450 kIU,维生素B1 5
00 mg,维生素B2 10 mg,泛酸5000 mg,烟酸12000 mg,生物素210 mg,叶酸200 mg。硫酸亚铁50 g,硫酸钴0.17 g,硫酸锌31 g,硫酸锰25 g,碘化钾0.65 g,亚硒酸钠0.15 g。
1.2 数据记录 分别在试验当天、28和56 d早上饲喂前对肉牛个体进行称重,每天记录全混合日粮的投喂量及剩余量,计算各阶段肉牛平均日增重、采食量和料比。试验期间,每周将温度计插入肉牛直肠5 cm深处测量温度,每天记录10 min 呼吸次数(呼吸频率以每分钟呼吸次数表示),同时用脉搏器记录每分钟脉搏次数。
1.3 养分消化及血清生化指标 试验结束前3 d,每天收集每个重复肉牛的粪便,汇总3 d的样品,取200 g粪便样品和饲料样品进行烘干、粉碎和过筛。样品参考史海涛(2016)的研究方法测定干物质、有机物、粗蛋白质、粗脂肪、中性洗涤纤维和酸性洗涤纤维含量,并计算消化率。试验结束当天在饲喂前通过颈静脉对每个重复的肉牛采血10 mL,分离血清。样品用建成生工所的商品试剂盒测定相关生化指标,测定方法参考试剂盒说明书进行。
1.4 数据分析 试验采用完全随机分组设计,采用SPSS软件对各组指标进行单因素方差分析,采用Ducan’s法进行多重比较,P<0.05表示差异显著。
2 结果与分析
2.1 热应激对肉牛生长性能的影响 由表2可知,T1组肉牛56 d的体重、29~56 d和1~56 d平均日增重较T3组分别显著提高
3.92%、23.45%和13.58%(P<0.05)。T3组肉牛29~56 d料重比较T1和T2组分别显著提高22.32%和13.22%(P<0.05),同时T3组肉牛1~56 d料重比较T1组显著提高12.69%(P <0.05)。
表2 热应激对肉牛生长性能的影响
项目T1组T2组T3组标准差P值
体重/kg
1 d229.87231.12229.670.790.48
28 d282.45280.00279.561.560.73
56 d332.67a327.45ab320.13b6.300.03演技排行榜
日增重/(kg/d)
1~28 d1.881.751.780.070.12
29~56 d1.79a1.69ab1.45b0.180.01
1~56 d1.84a1.72ab1.62b0.110.03
采食量/(kg/d)
1~28 d6.456.386.420.040.52
29~56 d8.038.217.940.140.36
1~56 d7.247.307.180.060.68
料重比
1~28 d3.433.653.600.120.16
海南三亚景点
29~56 d4.48c4.84b5.48a0.510.01
1~56 d3.94b4.24ab4.44a0.250.03
注:T1、T2和T3组肉牛饲喂同一种全混合日粮,试验期间T1组圈舍温度控制在28.5℃,T2组圈舍温
度控制在33.5℃,T3组圈舍温度控制在38.5℃。同行数据标注相同小写字母表示组间差异不显著(P>0.05),同行数据标注不同小写字母表示组间差异显著(P<0.05)。下表同。
2.2 热应激对肉牛养分消化率的影响 由表3可知,温度处理对肉牛粗蛋白质和粗脂肪消化率的影响无显著差异(P>0.05)。T1组肉牛干物质、有机物和酸性洗涤纤维消化率较T3组分别显著提高8.02%、9.79%和8.32%(P<0.05),而T3组肉牛中性洗涤纤维消化率较T1组显著提高8.31%(P<0.05)。
表3  热应激对肉牛养分消化率的影响
%项目T1组T2组T3组标准差P值
汽车贴膜注意事项
干物质63.45a61.28ab58.74b2.360.03
有机物66.82a62.34b61.69b2.790.02
粗蛋白质47.8246.9347.180.460.23
粗脂肪66.4563.8164.181.430.31中性洗涤纤维61.42b64.76ab66.53a2.590.03
酸性洗涤纤维56.73a54.28ab51.67b2.530.02 2.3 热应激对肉牛生理和血清参数的影响 由表4可知,T3组肉牛直肠温度、呼吸频率和脉搏均显著高于T1和T2组(P<0.05)。针对血清参数,T3组肉牛血清总蛋白、尿素氮、肌酸酐、甘油三酯浓度、乳酸脱氢酶、谷草转氨酶和谷丙转氨酶活性均显著高于T1组(P<0.05),而T1组肉牛血清甲状腺素浓度及碱性磷酸酶活性显著高于T3组(P<0.05)。温度处理对肉牛血清葡萄糖浓度无显著影响(P>0.05)。
表4  热应激对肉牛生理和血清参数的影响
中秋国庆同一天贺词项目T1组T2组T3组标准差P值直肠温度/℃38.23b38.19b39.25a0.600.04呼吸频率/(次/min)23.45b24.52b48.76a14.310.02
脉搏/(次/min)52.76b53.18b65.74a7.370.02
葡萄糖/(mg/dL)46.7848.2345.821.210.15
总蛋白/(mg/dL)6.12b6.83a6.98a0.460.04
尿素氮/(mg/dL)23.76b24.58b29.65a3.190.03
肌酸酐/(mg/dL)2.04b2.15b2.68a0.340.02
甘油三酯/(mg/dL)76.58b80.14ab84.76a4.100.04甲状腺素/(nmol/mL)73.24a68.76ab59.14b7.200.01
乳酸脱氢酶/(U/L)268.76b286.37ab387.45a64.050.04
碱性磷酸酶/(U/L)16.82a14.56ab12.18b2.320.02
谷草转氨酶/(U/L)32.14b37.62b45.83a6.890.02
谷丙转氨酶/(U/L)45.78b48.73b54.67a4.530.01
3 讨论
生理参数指标显示,高温组肉牛的直肠温度、呼吸频率和脉搏均显著升高,同时结合生长性能数据38.5℃组(T3)的平均日增重和末重及整个试验期间的饲料效率显著低于28.5℃组,提示38.5℃的环境温度可能会对动物造成热应激,这与Yadav等(2015)的结果一致。但Wheelock等(2010)报道,在27~30℃环境下,肉牛的生理参数有所增加。
针对养分消化率,38.5℃组肉牛干物质、有
机物和酸性洗涤纤维消化率显著低于28.5℃组。虽然在本研究中我们未研究瘤胃环境的改变,但Beatty等(2008)研究发现,高温环境下有机物和酸性洗涤纤维消化率的降低与瘤胃pH和微生物种的改变有关。Bernabucci等(1999)报道,在高温条件下短时间暴露可提高荷斯坦奶牛的饲料消化率,同时暴露时间越长,饲料消化率越低。此外,本试验条件下环境温度对肉牛粗蛋白质和粗脂肪消化率无显著影响,这与Bernabucci等(2009)报道的结果一致。
在本研究中高温环境下肉牛血清总蛋白浓度增加,表明蛋白质代谢的变化转向异化的一面,这与该组体重显著降低一致,暗示动物需要能量来维持机体正常体温,组织蛋白质分解代谢增强,进而导致血清蛋白、尿素和肌酸酐浓度增加。与28.5℃组相比,38.5℃暴露后血清甘油三酯水平较高,这可能与高温暴露时脂肪分解以满足调节体温能量过剩需求有关。此外,高温环境通常与动物甲状腺活动显著抑制相关,从而导致甲状腺激素水平降低(Sejian等,2014),本试验结果也证实了这一点,因为当动物开始因热而不适时,饲料摄入量减少,新陈代谢减慢,导致甲状腺功能减退(McManus等,2009)。
4 结论
圈舍温度达到38.5℃会抑制肉牛生长后期的日增重,降低饲料转化率,对生理参数和血清生化指标产生负面影响。
参考文献
[1] 冯仰廉,李胜利,赵广永,等. 牛甲烷排放量的估测[J].动物营养学报,2012,1:1~7.
[2] 胡坤. 反刍动物瘤胃内糖类、蛋白质及脂肪的消化代谢[J].养殖技术顾问,2014,12:54.
[3] 史海涛. 青贮玉米添加水平对荷斯坦后备母牛养分消化和肝脏转录组的影响[D]. 中国农业大学,2016.
[4] Banerjee D,Ashutosh. Effect of thermal exposure on. Effect of thermal exposure on diurnal rhythms of physiological parameters and feed,water intake in Tharparkar and Karan Fries heifers [J].Biol Rhythm Res,2011,42:39~51.
[5] Barnett M C,McFarlane J R,Hegarty R S. Low ambient temperature elevates plasma triiodothyronine concentrations while reducing digesta mean retention time and methane yield in sheep. J.
Anim. Physiol [J].Anim Nutr,2015,99:483~491.
[6] Bernabucci U,Bani P,Ronchi B,et al. Influence of short and long term exposure to hot enviro
nment on rumen passage rate and diet digestibility by Friesian heifers [J].J Dairy Sci,1999,82:967~973.
[7] Bernabucci U,Lacetera N,Danieli P P,et al. Influence of different periods of exposure to hot environment on r umen function and diet digestibility in sheep [J].Int J Biometeorol,2009,53:387~395.
[8] McManus C,Paludo G R,Louvandini H,et al. Heat tolerance in Brazilian sheep:physiological and blood parameters [J].Trop Anim Health Prod,2009,41:95~101.
[9] Seguin B. The consequences of global warming for agriculture and food production [M]. In:Proceedings of the Livestock and Global Climate Change(Eds. P. Rowlinson,M. Steele,and A. Nefzaoui)Cambridge University Press,Hammamet,Tunisia,2011,9~11. [10] Sejian V,Singh A K,Sahoo A,et al. Effect of mineral mixture and antioxidant supplementation on growth,reproductive performance and adaptive capability of Malpur a ewes subjected to heat stress [J].J Anim Physiol Anim Nutr.(Berl),2014,98:72~83.
[11] Wheelock B,Rhoads R P,VanBaale M J,et al. Effects of heat stress on energetic metabolism in lactating Holstein cows [J].J Dairy Sci,2010,93:644~655.
[12] Yadav B,Singh G,Verma A K,et al. Impact of heat stress on rumen functions [J].Vet World,2013,6:992~996.
[13] Yadav B,Singh G,Wankar A. Adaptive capability as indicated by redox status and endocrine responses in crossbred cattle exposed to thermal stress [J].J Anim Res,2015,5:67~73.
Effects different enclosure temperatures on growth performance,nutrient digestion and serum parameters of beef cattle
WANG Zhijing1,GAO Haixia1,YANG Baotian1,LI Gaotang2
(1.Agricultural Construction Project Management Station,Lanzhou,Gansu Province 730046 China;
2. Xinyuan beef cattle farm in anding district,Dingxi,Gansu Province 743011 China)
[Abstract] The aim of this experiment was to investigate the effects of different enclosure temperature on growth performance,nutrient digestion and serum biochemical indexes of beef cattle. A total of 36 beef cattle with a body weight of (230.22±0.79)kg were randomly divided into 3 groups with 4 replicates per group and 3 cattle per replicate. Beef cattle in groups T1,T2 and T3
were fed the same total mixed diet. During the experiment,the enclosure temperature of group T1 was controlled at 28.5℃,that of group T2 was controlled at 33.5℃,and that of group T3 was controlled at 38.5℃. The feeding experiment lasted for 8 weeks. Results:Compared with T3 group,body weight at 56 d,average daily gain at 20~56 d and 1~56 d in T1 group were significantly increased by 3.92%,23.45% and 13.58%(P<0.05),respectively. The feed/ gain ratio of beef cattle in T3 group at 29~56 d was significantly increased by 22.32% and 13.22% in T1 and T2 groups(P <0.05),respectively,and the feed/gain ratio of beef cattle in T3 group at 1~56 d was significantly increased by 12.69% in T1 group(P<0.05). The digestibility of dry matter,organic matter and acid detergent fiber in group T1 was significantly increased by 8.02%,9.79% and 8.32% compared with that in group T3(P<0.05),respectively,while the digestibility of neutral detergent fiber in group T3 was significantly increased by 8.31% compared with that in group T1(P<0.05). Rectum temperature,respiratory rate and pulse of beef cattle in T3 group were significantly higher than those in T1 and T2 groups(P <0.05). Regarding serum parameters,the concentrations of urea nitrogen,creatinine,triglyceride and the activities of lactate dehydrogenase,glutamic-oxalacetic transaminase and glutamic-pyruacetic transaminase in serum of beef cattle in T3 group were significantly higher than those in T1 group(P<0.05),while the concentration of thyroxine and the activity of alkaline phosphatase in serum of beef cattle in T1 grou
p were significantly higher than those in T3 group(P<0.05). In conclusions:Under the conditions of this experiment,the enclosure temperature of 38.5℃ can inhibit the daily gain of beef cattle at later growth stage,reduce feed conversion rate,and have negative effects on physiological parameters and serum biochemical indexes.
[Key words] temperature;beef cattle;growth performance;nutrient digestion;serum parameter

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。