经济管理学院学院
材料化学
关于碳化硅的综述
学 号:**********
专 业:工商管理
******
*********
2011教师节板报内容年11月
关于碳化硅的综述
陈昊
哈尔滨工程大学
摘 要:电子眼违章碳化硅是用石英砂、石油焦、木屑为原料通过电阻炉高温冶炼而成。碳化硅在大自然也存在罕见的矿物,莫桑石。 碳化硅又称碳硅石。在当代C、N、B等非氧化物高技术耐火原料中,碳化硅为应用最广泛、最经济的一种。可以称为金钢砂或耐火砂。 碳化硅是用石英砂、石油焦(或煤焦)、木屑(生产绿碳化硅时需要加食盐)等原料在电阻炉内经高温冶炼而成。目前我国工业生产的碳化硅分为黑碳化硅和绿碳化硅两种,均为六方晶体。
关键词:碳化硅 立体结构 耐火材料
一、碳化硅概述
碳化硅是用石英砂、石油焦(或煤焦)、木屑为原料通过电阻炉高温冶炼而成。包括黑碳化硅和绿碳化硅,其中:黑碳化硅是以石英砂,石油焦和优质硅石为主要原料,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉,性脆而锋利。绿碳化硅是以石油焦和优质硅石为主要原料,添加食盐作为添加剂,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉。 常用的碳化硅磨料有两种不同的晶体,一种是绿碳化
硅,含SiC 97%以上,主要用于磨硬质合金工具。另一种是黑碳化硅,有金属光泽,含SiC 95%以上,强度比绿碳化硅大,但硬度较低,主要用于磨铸铁和非金属材料。碳化硅在大自然也存在罕见的矿物,莫桑石。 碳化硅又称碳硅石。在当代C、N、B等非氧化物高技术耐火原料中,碳化硅为应用最广泛、最经济的一种。可以称为金钢砂或耐火砂。[1] 碳化硅是用石英砂、石油焦(或煤焦)、木屑(生产绿碳化硅时需要加食盐)等原料在电阻炉内经高温冶炼而成。目前我国工业生产的碳化硅分为黑碳化硅和绿碳化硅两种,均为六方晶体,比重为3.20~3.25,显微硬度为2840~3320kg/mm2。
其分子式为SiC,其硬度介于刚玉和金刚石之间,机械强度高于刚玉,可作为磨料和其他某些工业材料使用。工业用碳化硅于1891年研制成功,是最早的人造磨料。在陨石和地壳中虽有少量碳化硅存在,但迄今尚未到可供开采的矿源。
纯碳化硅是无透明的晶体。工业碳化硅因所含杂质的种类和含量不同,而呈浅黄、绿、蓝乃至黑,透明度随其纯度不同而异。碳化硅晶体结构分为六方或菱面体的 α-SiC和立方体的β-SiC(称立方碳化硅)。α-SiC由于其晶体结构中碳和硅原子的堆垛序列不同而构成许多不同变体,已发现70余种。β-SiC于2100℃以上时转变为α-SiC。
碳化硅的工业制法是用优质石英砂和石油焦在电阻炉内炼制。炼得的碳化硅块,经破碎、酸碱洗、磁选和筛分或水选而制成各种粒度的产品。
碳化硅有黑碳化硅和绿碳化硅两个常用的基本品种,都属α-SiC。①黑碳化硅含SiC约95%,其韧性高于绿碳化硅,大多用于加工抗张强度低的材料,如玻璃、陶瓷、石材、耐火材料、铸铁和有金属等。②绿碳化硅含SiC约97%以上,自锐性好,大多用于加工硬质合金、钛合金和光学玻璃,也用于珩磨汽缸套和精磨高速钢刀具。此外还有立方碳化硅,它是以特殊工艺制取的黄绿晶体,用以制作的磨具适于轴承的超精加工,可使表面粗糙度从Ra32~0.16微米一次加工到Ra0.04~0.02微米。
碳化硅由于化学性能稳定、导热系数高、热膨胀系数小、耐磨性能好,除作磨料用外,还有很多其他用途,例如:以特殊工艺把碳化硅粉末涂布于水轮机叶轮或汽缸体的内壁,可提高其耐磨性而延长使用寿命1~2倍;用以制成的高级耐火材料,耐热震、体积小、重量轻而强度高,节能效果好。低品级碳化硅(含SiC约85%)是极好的脱氧剂,用它可加快炼钢速度,并便于控制化学成分,提高钢的质量。此外,碳化硅还大量用于制作电热元件硅碳棒。
碳化硅的硬度很大,具有优良的导热性能,是一种半导体,高温时能抗氧化。
二、碳化硅的性质
碳化硅主要有两种结晶形态:b-SiC和a-SiC。b-SiC为面心立方闪锌矿型结构,晶格常数a=0.4359nm。a-SiC是SiC的高温型结构,属六方晶系,它存在着许多变体。
碳化硅的折射率非常高,在普通光线下为2.6767~2.6480.各种晶型的碳化硅的密度接近,a-SiC一般为3.217g/cm3,b-SiC为3.215g/cm3.纯碳化硅是无透明的,工业SiC由于含有游离Fe、Si、C等杂质而成浅绿或黑。绿碳化硅和黑碳化硅的硬度在常温和高温下基本相同。SiC热膨胀系数不大,在25~1400℃平均热膨胀系数为4.5×10-6/℃。碳化硅具有很高的热导率,500℃时为64.4W/(m•K)。常温下SiC是一种半导体。碳化硅的基本性质列于下表。
性质 | 指标 | 性质 | 指标 |
摩尔质量/(g/mol) 颜 密度/(g/cm3) | 40.097 纯SiC为黄,添加B、N、Al为棕 a-SiC 3.217g/cm3 b-SiC 3.215g/cm3 | 德拜温度/K | a-SiC 1200 b-SiC 1430 |
能隙/eV | a-SiC(6H) 2.86 b-SiC 2.60 | ||
超导转变温度/K | 5 | ||
摩尔热容/[J/(mol·K)] | a-SiC 27.69 b-SiC 28.63 | 今日资讯弹性模量/GPa | 293K为475 1773K为441 |
生成热(198.15K时)/(kJ/mol) | a-SiC 25.73±0.63 b-SiC 28.03±2.00 | 弹性模量/GPa | 192 |
热导率/[W/(m·K)] | a-SiC 40.0 b-SiC 25.5 | 体积模量/GPa | 96.6 |
线膨胀系数/(10-6/K) | a-SiC 5.12 b-SiC 3.80 | 泊松比n | 0.142 |
300K时的介电常数 | a-SiC(6H)9.66~10.03 b-SiC 9.72 | 抗弯强度/Mpa | 350~600 |
电阻率/Ω·m | a-SiC 0.0015~103 b-SiC 10-2~106 | 耐腐蚀性 | 狗为伴侣动物拟禁食在室温下几乎是惰性 |
碳化硅具有耐高温、耐磨、抗冲刷、耐腐蚀和质量轻的特点。碳化硅在高温下的氧化是其损害的主要原因。
三、碳化硅的合成
①碳化硅的冶炼方法
1.小规模合成碳化硅的方法
合成碳化硅所用的原料主要是以SiO2为主要成分的脉石英或石英砂与以C为主要成分的石油焦,低档次的碳化硅可用地灰分的无烟煤为原料。辅助原料为木屑和食盐。
碳化硅有黑、绿两种。冶炼绿碳化硅时要求硅质原料中SiO2含量尽可能高,杂质含量尽量低。生产黑碳化硅时,硅质原料中的SiO2可稍低些。对石油焦的要求是固定碳含量尽可能高,灰分含量小于1.2%,挥发分小于12.0%,石油焦的粒度通常在2mm或1.5mm以下。木屑用于调整炉料的透气性能,通常的加入量为3%~5%(体积)。食盐仅在冶炼绿碳化硅时使用。
硅质原料与石油焦在2000~2500℃的电阻炉内通过以下反应生成碳化硅:
SiO2+3C→SiC+2CO↑-526.09Kj
CO通过炉料排出。加入食盐可与Fe、Al等杂质生成氯化物而挥发掉。木屑使物料形成多孔烧结体,便于CO气体排出。
碳化硅形成的特点是不通过液相,其过程如下:约从1700℃开始,硅质原料由砂粒变为熔体,进而变为蒸汽(白烟);SiO2熔体和蒸汽钻进碳质材料的气孔,渗入碳的颗粒,发生生成Sic的反应;温度升高至1700~1900℃时,生成b-SiC;温度进一步升高至1900~2000℃时,细小的b-SiC转变为a-SiC,a-SiC晶粒逐渐长大和密实;炉温再升至2500℃左右,SiC开始分解变为硅蒸汽和石墨。[2]
2.大规模生产碳化硅所用的方法有艾奇逊法和 ESK法。
艾奇逊法
碳化硅用途传统的艾奇逊法电阻炉的外形像一个长方形的槽子,它是有耐火砖砌成的炉床。两组电极穿过炉墙深入炉床之中,专用的石墨粉炉芯体配置在电极之间,提供一条导电通道,通电时下产生很大的热量。炉芯体周围装盛有硅质原料、石油焦和木屑等组成的原料,外部为丽水美食
保温料。
熔炼时,电阻炉通电,炉芯体温度上升,达到2600℃左右,通过炉芯体表面传热给周围的混合料,使之发生反应生成碳化硅,并逸出CO气体。一氧化碳在炉表面燃烧生成二氧化碳,形成一个柔和、起伏的蓝至黄火焰毡被,一小部分为燃烧的一氧化碳进入空气。待反应完全并冷却后,即可拆除炉墙,将炉料分层分级拣选,经破碎后获得所需粒度,通过水洗或酸碱洗、磁选等除去杂质,提高纯度,再经干燥、筛选即得成品。
艾奇逊法设备简单、投资少,广泛为石阶上冶炼SiC的工厂所采用。但该法的主要缺点在于无法避免粉尘和废气造成的污染,冶炼过程排出的废气无法收集和再利用,无法减轻取料和分级时的繁重体力劳动,同时炉子的长度也不够,通常仅几米至几十米长,生产经济性不高。[3]
ESK法
1973年,德国ESK公司对艾奇逊法进行了改进,发展了ESK法。Esk法的大型SiC冶炼炉建立在户外,没有端墙和侧墙,直线性或U型电极位于炉子底部,炉长达60m,用聚乙烯袋子
进行密封以回收炉内逸出的气体,提取硫后将其通过管道小型火电厂发电。该炉可采用成本低、活性高、易反应的高硫分石油焦或焦炭作为原料,将原料硫含量由原来的1.5%提高到5.0%。[4]
②碳化硅粉末的合成方法
合成碳化硅粉末的方法主要有固相法、液相法和气相法三种。
固相法是通过二氧化硅和碳发生碳热还原反应或硅粉和炭黑细粉直接在惰性气氛中发生反应而制得碳化硅细粉。可以通过机械法将艾奇逊法或ESK法冶炼的碳化硅加工成SiC细粉。目前该方法制得的细粉表面积1~15m2/g,氧化物含量1.0%左右,金属杂质含量1400~2800ppm(1ppm=10-6)。其细度和成分取决于粉碎、酸洗等后续处理工艺和手段。碳化硅粉末也可以由竖炉或高温回转窑连续化生产,可获得高质量的b-SiC粉体。SiO2细粉与碳粉混合料在竖炉的惰性气氛中,在低于2000℃的温度下发生热还原反应,合成b-SiC粉体。所获得的SiC的粒度为微米级。但往往含有非反应的SiO2和C,需进行后续的酸洗和脱碳处理。利用高温回转窑也可生产出高质量的SiC细粉。[5]
液相反应法可制备高纯度、纳米级的SiC微粉,而且产品均匀性好,是一种具有良好发展前景的方法。液相反应法制备SiC微粉主要分为溶胶-凝胶法和聚合物热分解法等。溶胶-凝胶法制备SiC微粉的核心是通过溶胶-凝胶反应过程,形成Si和C在分子水平上均匀分布的混合物或聚合物固体,升温过程中,首先形成SiO2和C的均匀混合物,然后在1400~1600℃温度下发生碳热还原反应生成SiC。
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论