2023年人教版八年级数学(下册)期末试卷及答案
班级: 姓名:
一、选择题(本大题共10小题,每题3分,共30分)
1.的相反数是( )
A. B.2 C. D.
2.若满足,则的值为( )
A.1或0 B. 或0 C.1或 D.1或
3.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是( )
A. B. C. D.
4.已知点P(2a+4,3a-6)在第四象限,那么a的取值范围是( )
A.-2<a<3 B.a<-2 C.a>3 D.-2<a<2
5.用配方法解方程时,配方结果正确的是( )
A. B.
C. D.
6.如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正确结论有( )
A.0个 B.1个 C.2个 D.3个
7.如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E处,若∠AGE=32°,则∠GHC等于( )
A.112° B.110° C.108° D.106°
8.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为( )
A.60海里 B.45海里 C.20海里 D.30海里
9.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是( ) 小学生家长意见怎么写
A.BC=EC,∠B=∠E B.BC=EC,AC=DC
C.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D
10.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )
A.150° B.180° C.210° D.225°
二、填空题(本大题共6小题,每小题3分,共18分)
1.已知am=3,an=2,则agoodtime2m﹣n的值为________.
2.若代数式有意义,则的取值范围为__________.
3.因式分解:a2-9=_____________.
4.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=________.房屋建筑风水学
5.如图,在初二下册数学试卷□ABCD中,BE平分∠ABC,BC=6,DE=2,则□ABCD的周长等于__________.
6.如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为 .
三、解答题(本大题共6小题,共72分)
1.解方程:
2.先化简,再求值:(1﹣)÷,其中x=+2
3.已知的立方根是3,的算术平方根是4,c是的整数部分.
(1)求a,b,c的值;(2)求的平方根.
4.已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.
玛雅文化预言(1)求证:AB=AF;
(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.
5.已知:如图所示,AD平分,M是BC的中点,MF//AD,分别交CA延长线,AB于F、E.
求证:BE=CF.
6.某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费
9元.
设小明计划今年夏季游泳次数为x(x为正整数).
(1)根据题意,填写下表:
游泳次数 | 10 | 15 | 20 | … | x |
方式一的总费用(元) | 150 | 175 | ______ | … | ______ |
方式二的总费用(元) | 90 | 135 | ______ | … | ______ |
都市之游戏人间 |
(2)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论