人教版九年级数学第一学期期末复习压轴题专题提升训练(附答案)
1.如图①,AB=5,射线AM∥BN,点C在射线BN上,将△ABC沿AC所在直线翻折,点B的对应点D落在射线BN上,点P,Q分别在射线AM、BN上,PQ∥AB.设AP=x,QD=y.若y关于x的函数图象(如图②)经过点E(9,2),则cosB的值等于( )
A. B. C. D.
2.如图①,E为矩形ABCD的边AD上一点,BE<BC,点P从点B出发沿折线B﹣E﹣D运动到点D停止,点Q从点B出发沿BC运动到点C停止,它们的运动速度都是1cm/s.现P,Q两点同时出发,设运动时间为x(s),△BPQ的面积为y(cm2),若y与x的对应关系如图②所示,则矩形ABCD的面积是( )
A.96cm2 B.84cm2 C.72cm2 D.56cm2
3.如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为( )
A. B.2 C.2 D.3
4.如图,在四边形ABCD中(AB>CD),∠ABC=∠BCD=90°,AB=3,BC=,把Rt△ABC沿着AC翻折得到Rt△AEC,若tan∠AED=,则线段DE的长度( )
A. B. C. D.
5.如图,等边△ABC的边长为3,点D在边AC上,AD=,线段PQ在边BA上运动,PQ=,有下列结论:
①CP与QD可能相等;
②△AQD与△BCP可能相似;
③四边形PCDQ面积的最大值为;
④四边形PCDQ周长的最小值为3+.
其中,正确结论的序号为( )
A.①④ B.②④ C.①③ D.②③
6.如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为( )
A. B. C. D.
7.如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:
①EF⊥BG;
②GE=GF;初三数学上册期末试卷
③△GDK和△GKH的面积相等;
④当点F与点C重合时,∠DEF=75°,
其中正确的结论共有( )
A.1个 B.2个 C.3个 D.4个
8.如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B′恰好落在AD边上,则BE的长度为( )
A.1 B. C. D.2
9.如图,在△ABC中,BC=3,将△ABC平移5个单位长度得到△A1B1C1,点P、Q分别是AB、A1C1的中点,PQ的最小值等于 .
10.如图,∠MON=30°,在OM上截取OA1=.过点A1作A1B1⊥OM,交ON于点B1,以点B1为圆心,B1O为半径画弧,交OM于点A2;过点A2作A2B2⊥OM,交ON于点B2,以点B2为圆心,B2O为半径画弧,交OM于点A3;按此规律,所得线段A20B20的长等于 .
11.在△ABC中,若AB=6,∠ACB=45°.则△ABC的面积的最大值为 .
12.如图,点C在线段AB上,且AC=2BC,分别以AC、BC为边在线段AB的同侧作正方形ACDE、BCFG,连接EC、EG,则tan∠CEG= .
13.如图,在▱ABCD中,∠B=60°,AB=10,BC=8,点E为边AB上的一个动点,连接ED并延长至点F,使得DF=DE,以EC、EF为邻边构造▱EFGC,连接EG,则EG的最小值为 .
14.如图,在平面直角坐标系xOy中,半径为2的⊙O与x轴的正半轴交于点A,点B是⊙O上一动点,点C为弦AB的中点,直线y=x﹣3与x轴、y轴分别交于点D、E,则△CDE面积的最小值为 .
15.如图,在Rt△ABC中,∠ACB=90°,AB=4,点D,E分别在边AB,AC上,且DB=2AD,AE=3EC,连接BE,CD,相交于点O,则△ABO面积最大值为 .
16.如图,正方形ABCD中,△ABC绕点A逆时针旋转到△AB'C',AB',AC'分别交对角线BD于点E,F,若AE=4,则EF•ED的值为 .
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论