驾驶员疲劳驾驶预警系统的设计
驾驶员疲劳驾驶预警系统的设计
马乐;姜立标;王会荣;王蒙
【摘 要】针对疲劳驾驶监测的要求,设计了一种基于IT公司高速图像处理芯片TMS320DM642的疲劳驾驶预警系统,用以判定驾驶员的疲劳程度,降低交通事故.系统采用机器视觉的方法,先通过CCD摄像头拍下驾驶员的面部图像序列,然后检测出脸部,从而定位眼睛,再利用PERCLOS算法判定疲劳状态.实验结果表明,该系统准确率高、速度快,可以满足非接触式、全天候、实时监测的要求.
【期刊名称】《哈尔滨工业大学学报》
【年(卷),期】2011(043)005
【总页数】5页(P139-143)
【关键词】疲劳驾驶;数字信号处理器;人脸检测;PERCLOS算法;级联分类器
【作 者】马乐;姜立标;王会荣;王蒙
【作者单位】中国农业大学,工学院,100083;北京华南理工大学广州汽车学院,510800,广州;华南理工大学,机械与汽车工程学院,510640,广州;哈尔滨工业大学(威海)汽车工程学院,264209,山东,威海;Griffith,College,Dublin,Dublin
【正文语种】中 文
【中图分类】U463.33
疲劳驾驶已经成为引发交通事故的主要原因之一.在当前的疲劳驾驶检测技术领域,基于驾驶员脸部特征的非接触式疲劳检测算法的研究和疲劳预警系统的开发已经成为了主流之一.
驾驶员脸部主要特征的人脸和眼睛检测是指对于任意一幅给定的图像,通过一定的方法和策略,搜索并确定其中是否存在人脸,如果存在则返回人脸相应的信息[1];在人脸检测的基础上,定位、检测眼睛是睁开还是闭合,并返回眼睛相应的信息.人脸和眼睛检测系统的精度与速度直接影响疲劳预警系统的性能.驾驶员疲劳驾驶预警系统的应用超越了人脸识别系统的范畴,在视频会议、智能人机交互、虹膜识别系统等方面也有重要的应用价值.
1 系统设计
1.1 人脸检测和人眼定位算法开发
本文选用现在比较热门的MB-LBP特征描述人脸和人眼,该特征具有噪声敏感度小的优点.选用adaboost算法家族中性能最为优异的Gentleadaboost算法来训练人脸检测和人眼定位分类器.通过训练挑选出检测率高的弱分类器,再将选出的弱分类器按照权重组成强分类器,进而形成级联分类器.最终经过反复实验调整参数,在PC机上运行获得较高的人眼检测率.
疲劳驾驶预警系统
1.2 检测与识别算法的数字信号处理器移植
在TI公司的CCS3.1软件中对人脸检测和人眼定位算法进行仿真,然后移植到以数字信号处理器(DSP)为核心的DM642开发板中.在移植过程中运用多种优化手段,最终算法在DSP中运行能够达到18帧/s的检测速度,满足实时检测的性能要求.
1.3 实验分析
完成算法的开发后,分别建立以 PC机和DSP为基础的实验装置,对算法的正确性和实时性进行分析.通过实验,使得本文所研究的疲劳驾驶预警装置能够基本上达到预期目的.
因驾驶防瞌睡装置的应用特殊性[2],设计的系统必须满足:1)非接触式,即不对驾驶员的驾驶行为产生干扰影响;2)实时性,能实时地检测驾驶员驾驶疲劳生理特征参数,迅速、准确、及时地对处于疲劳状态的司机发出警告;3)全天候,无论工作在光照充足、微光、无光状态下,系统都可以对司机的疲劳状态做出正确的分析.疲劳驾驶预警系统如图1.
图1 疲劳驾驶预警系统的实物图
2 系统硬件电路设计
系统硬件电路主要由5部分组成:图像采集、图像处理、疲劳判定、报警和电源管理.系统设计应遵循以下原则:
1)准确性.系统力求能够准确定位人脸、定位眼睛、计算眼睛状态和PERCLOS值,并在标定阀值后实现疲劳判断,尽量减少误判.
2)实时性.系统硬件的选择要保证系统能运行流畅,程序的编写应尽量选择经典的优化算法,以快速实现图像的截取、人脸和眼睛的定位以及眼睛状态和PERCLOS值的计算.
3)经济性.选择市场易购买、性能匹配和价格低廉的设备.
2.1 图像采集
采用CCD摄像头拍下驾驶员头部图像,经过高精度的A/D转换成DSP可以读取的数字图像.本文使用了SONY420线彩红外夜视海螺型CCD摄像头作为图像的采集设备.这款CCD能自动感应外界光线,当外界光线充足时得到普通的彩图像,而光线不足时由CCD自动开启镜面上自带的两圈红外LED灯,利用LED发出的近红外作为光源获得红外图像,满足系统全天候工作的要求.采用Philips公司的视频采集处理芯片SAA7113H[3]作为视频解码器,来实现模拟视频的数字化.
2.2 图像处理
图像处理和分析由DSP完成,图像处理包括图像的预处理及面部图像、眼部图像的处理.由于实际环境中图片背景较复杂,容易使程序对人脸区域进行错误划分.利用图像预处理技术对噪声、光照不足、图像扭曲等问题进行纠正,保证人脸图像中人脸大小、位置以及人脸图像质量的一致性.在预处理的基础上,进行面部图像和眼部图像的处理,使系统能更好地判定人眼的状态,进而进行疲劳状态的判定.图像处理流程如图2所示.
图2 图像处理的流程图
选用TI公司的TMS320DM642作为核心处理器,其主要原因为:1)为便于将开发的疲劳驾驶监测技术运用于实际驾驶环境中,必须将疲劳驾驶监测技术从体积大的PC机上移植到体积小、稳定性高和功耗低的嵌入式系统中,由于DSP的应用日渐广泛且体积小、功耗低,为此可将疲劳驾驶监测技术移植到DSP中,以组装成一个完整的疲劳驾驶监测系统.2)TI公司的编译器 CCS (Code Composer Studio)产生代码的平均效率是其他DSP编译器的3倍,可借助CCS编译器降低开发难度,缩短系统的开发周期.3) TMS320DM642工作频率高,计算速度快,可轻松处理25~30帧的图像,满足系统实时性的要求,非常吻合本系统的设计需要[4-5].
2.3 疲劳判定和报警
在图像预处理和人脸检测的基础上,利用PERCLOS(Percentage of Eyelid Closure Over the Pupil Over Time)算法对人眼进行检测,PERCLOS (Percent eye Closure)是指在一定的时间内眼睛闭合时所占的时间比例[6].实验表明,眼睛闭合时间的长短与疲劳程度有密切关系,驾驶员眼睛闭合时间越长,疲劳程度越严重.在实际驾驶中,连续检测司机的PERCLOS和眼睛持续闭合时间,如果有,PERCLOS>40%,眼睛持续闭合时间>3 s,
就判定该司机处于疲劳状态,疲劳预警系统对驾驶员给出语音提示.语音报警电路如图3所示.
图3 语音报警电路
2.4 电源模块
系统采用的电源是220 V直流电.针对本系统所购买的器件,需要考虑2个问题:首先,外围电路(SONY420线彩红外夜视海螺型CCD摄像头)所需电压为+12 V,需要将220 V直流电压转换成摄像头所需的+12 V电压;其次,DSP开发板电源(J12)接口需要的电压是+5 V,需要将220 V直流电压转换成DSP开发板所需的+5 V电压.
DSP工作电压:I/O电压+3.3 V,核电压+1.4 V,系统采用TPS54310芯片,经降压芯片把DSP开发板电源(J12)接口的5 V电压转换成DSP工作电压+3.3 V和+1.4 V,稳压电路如图4、5所示.
图4 +3.3V稳压电路
图5 +1.4 V稳压电路
3 人脸和人眼的检测原理
3.1 MB-LBP特征的应用
本文所应用的MB-LBP特征是LBP特征的一种扩展[7].这种特征可以解决原始LBP特征只能描述小范围的图像信息以及易受噪声影响的问题.实验发现,在视频监控数据以及人脸检测数据上,MB-LBP特征相比原始LBP特征有更好的分辨能力,同时,MB-LBP特征保持了LBP特征运算复杂度低,灰度尺寸的鲁棒性好,计算速度较快的优点.由于MB-LBP特征将目标图像升维成相当高的维度,Gentleboost学习算法被用来降维并且构建分类器.另外,设计了多叉树型的弱分类器来针对MB-LBP特征的非度量特性问题.
MB-LBP还有一个优点[8],即特征数目少,在训练阶段所耗费的时间会大大减少.在20*20的图像中,大概含有上万个haar特征,但是只包含2 000左右的MB-LBP特征,特征数目减小约80%,利用MB-LBP特征训练样本库的时间会少很多.在实际操作过程中,由于haar的特征是表示度量意义的,在每次迭代中都需要将全部的m个haar特征的特征值排序,从中选择最优的阈值作为单个haar特征弱分类器的分类标准.但是,MB-LBP特征是非度量的,因此在每次迭代中不需要对特征编码进行排序,所以利用MBLBP特征来训练样本
库又会快很多.

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。