苏教版教材“认识小数”的编排思路及主要特点(精选5篇)
苏教版教材“认识小数”的编排思路及主要特点(精选5篇)
第一篇:苏教版教材“认识小数”的编排思路及主要特点
苏教版教材“认识小数”的编排思路及主要特点
整数、小数和分数的认识是小学数学的重点内容,也是广大教师十分熟悉的传统内容。其中,对小数的认识在“数的认识”这个内容序列中又占据着十分重要的位置。这一方面是因为小数与整数、分数有着十分密切的联系,通过认识小数不仅可以丰富和加深对整数以及十进制记数法的理解,而且能为进一步认识分数积累经验、打好基础;另一方面是因为现实生活中存在大量与小数有关的现象和问题,通过认识小数有助于学生拓宽知识视野,感受数学知识和方法的广泛应用,促使他们从现实生活中发现和提出更多有意义的问题。
根据小学生已有的知识经验、认知水平以及后续学习的需要,小学数学教材通常会将小数认识的内容分两段安排:第一段侧重结合简单生活情境教学一位小数的认识,引导学生结合具体情境比较一位小数的大小;第二段侧重引导学生探索并理解小数的意义和性质,在相对抽象的层面初步形成对小数知识的结构性认识,从而为进一步学习小数的四则运算打下基础。
尽管不同时期、不同版本的教材大都遵循上述编排思路,但在一些具体内容和相应教学活动的安排上,还是存在一些不同做法的。本文将结合笔者对相关教学内容的理解,对苏教版教材中“认识小数”内容的编排思路和主要特点做一些具体分析,供老师们教学时参考。
一、关于小数的初步认识
苏教版教材依据《课程标准(2011年版)》“课程内容”的具体要求,把“小数的初步认识”安排在三年级下册第六单元进行教学。从对数的已有认识来看,此时学生已经认识了万以内的整数,知道不同数位上的数字表示的数值是不同的,相邻数位的计数单位都遵循“满十进一”的基本规则;也已经分两次认识了一些简单的分数,知道将一个常见的计量单位(如1元、1米)平均分成10份,每份就是这个单位的十分之一,几份就是这个单位的十分之几。
考虑到学生已有的知识基础和生活经验,苏教版教材按如下的思路编排小数的初步认识:首先通过测量长度的问题情境引入对整数部分是0的一位小数的认识,接着通过购买物品的问题情境引入对整数部分不是0的一位小数的认识。以此为基础,教材又着眼于小数与整数的联系和区别,结合例子具体说明什么样的数是整数(自然数),什么样的数是小数,并简单介绍小数中的小数点、整数部分和小数部分的含义。在学生初步理解简单一位小数的
基本含义之后,教材又安排两道例题依次教学简单一位小数的大小比较和加减计算。容易看出,这里安排的大小比较和加减计算,主要的目的是为了帮助学生巩固对一位小数的已有认识,引导他们应用对小数含义的初步理解自主探索相关大小比较和加减计算的方法。上述编排思路以及相关的活动安排主要有如下一些特点。
第一,注意让学生较为全面地感知小数的实际应用背景。测量长度的结果不是整米数,物品的价格不是整元数,这是日常生活中最为常见的用到小数的两种情境。为此,教材中的几道例题不仅涉及购买物品的情境,而且涉及测量长度的情境。同时,教材中的习题也安排了很多测量长度和购买物品的简单实际问题,让学生联系具体的问题背景读、写小数,解释小数的含义,比较小数的大小,进行简单的加减计算,从而不断丰富对小数含义的认识,加深对小数实际应用价值的体验。
第二,借助直观不断提升学生的认识水平。尽管这部分内容只要求学生结合简单的生活情境初步认识一位小数,但考虑到小数的本质是抽象的,所以教材注意借助直观手段进
行适当的渗透和孕伏,以启发学生在活动中形成一些有益的感悟,不断提升对小数的认识水平。除了要求学生在直条图和正方形中涂表示一位小数之外,教材还十分重视在直线
上描点表示小数的练习,并引导学生结合操作过程开展适当的思考。例如,练习十一中的第3题,通过在直线上填数以及回答“填出的数中,哪个最接近0.5?哪个最接近3”这个问题,既有助于学生再次体会一位小数的含义,又有助于他们进一步明确相关小数的大小和顺序,感受整数与小数的内在关联,促进良好认知结构的形成。
第三,引导学生用不同方式合理灵活地获取知识。在教学零点几的认识时,先让学生联系分数的含义独立思考“5分米是几分之几米?4分米呢”,再直接告诉他们“5/10米还可以写成0.5米,0.5读作零点五;4/10米还可以写成0.4米,0.4读作零点四”。教学几点几的认识时,先鼓励学生利用对零点几的已有认识和日常生活经验试着用“元”做单位的小数表示1元2角和3元5角,再通过直接叙述对相关小数的读、写方法进一步加以明确。教学一位小数的大小比较和加减计算时,则侧重于引导学生通过自主探索、合作交流,选择富有个性的方法解决问题。这样的编排有收有放,有助于发挥不同学习方式的作用,体现了对学生生活经验、认知水平和知识建构方式的准确把握。
二、关于小数的意义和性质
苏教版教材将“小数的意义和性质” 安排在五年级上册第三单元进行教学。此时,学生不仅
已经完成对整数的认识,能够正确进行整数的四则运算,而且也已经初步认识了负数。换句话说,学生的头脑中已经初步形成关于整数的认知结构,此时相对集中地教学小数的意义和性质,一方面能满足学生进一步扩大认数范围的心理需求,另一方面也有助于他们从一个新的角度巩固和加深对整数的理解,并为进一步学习分数知识做好准备。根据知识自身的逻辑关联,以及学生对相关知识的已有认识和经验储备,苏教版教材将这部分内容分成三段进行安排:第一段侧重引导学生概括小数的意义,掌握小数的读、写方法,了解小数的计数单位及其进率、数位名称及其顺序;第二段,侧重引导学生探索和应用小数的基本性质,学习小数的大小比较方法;第三段,侧重引导学生学习用“万”或“亿”作单位的小数表示较大的整数,初步了解小数的近似数及其求法。
在这三段内容中,第一段内容不仅体量最大,涉及的知识点最多,而且在整个小数的知识体系中处于最为核心的位置。为此,苏教版教材遵循由易到难、由具体到抽象的原则,富有层次地组织相关的教学活动,引导学生逐步完成对小数意义的建构。教材首先在“长度背景”中引导学生依次用“米”做单位的分数表示几分米、几厘米和几毫米,同时由 “一位小数表示十分之几”类推出“两位小数表示百分之几,三位小数表示千分之几”,进而基于上述认识对小数的意义进行初步的归纳。接着,通过在表示整数“1”的正方形中进行涂操作,以及自然数包括小数吗
相应的讨论交流,不失时机地介绍小数的数位名称及其顺序、计数单位及其进率,从而使学生在更为抽象的层面把握小数的基本特点。最后,结合现实情境引导学生进一步认识整数部分不是0的小数,通过对一个带小数中各个数位上数的含义的讨论以及填写“小数数位顺序表”的操作,一方面将整数部分的数位顺序和小数部分的数位顺序衔接起来,另一方面帮助他们拓展和完善对小数的已有认识。上述编排思路以及相关的活动安排主要有如下几个特点。
第一,依据对整数的已有认识以及对分数和小数的初步认识进行合情推理。学生对整数的已有认识以及对分数和小数的初步认识,是他们学习本单元内容的重要基础。教材注意充分发挥学生已有知识经验在理解小数意义过程中的支撑作用,着力引导他们基于一
些熟悉的知识结论进行合乎逻辑的推想,从而不断获得各种新的认识。教学小数的基本含义时,先让学生根据米和分米的关系,将1分米和3分米分别改成用“米”做单位的分数和小数,有效唤醒“一位小数表示十分之几”的已有认识;再要求学生依据米和厘米、米和毫米的关系,试着将1厘米、4厘米、12厘米以及1毫米、40毫米、105毫米等改成用“米”做单位的分数,并由此类推出“两位小数表示百分之几,三位小数表示千分之几”,进而由此联想到更
多位数小数的含义。教学将大数目改写成用“万”或“亿”作单位的小数时,先让学生应用对多位数大小及其组成方法的已有认识,判断把384400改写成用“万”作单位的小数后整数部分是多少,再由此进一步推知小数部分,并总结改写的一般方法。这样的安排既遵循了知识发生、发展的内在逻辑,又为学生的探索性学习提供了合适的空间和必要的机会。
第二,借助几何直观逐步完成对小数概念的初步抽象。如前所述,本单元所认识的小数本质上属于一类特殊的分数,而分数的本质就是将自然数的基本单位不断均分的结果。如何引导学生将具体情境中获得的相关认识适当加以抽象,以便于他们在数的层面进一步感悟小数的本质内涵?基本的方法就是把抽象的数概念与直观的图形联系起来,充分挖掘并利用相关概念中的直观成分,让学生借助几何直观获得更多有价值的体验。这方面,苏教版教材中有很多值得关注的安排。首先,教材多次呈现用正方形或正方体表示的整数“1”,要求学生或根据图中的涂部分写出相应的分数、小数,或在图中涂表示相应的分数、小数。容易看出,这里的正方形或正方体不再是“1元”、“1米”等具体的数量,而是相对抽象的自然数“1”,这就使得学生原有的认识得到一定程度的提升。除了用正方形或正方体表示整数“1”,教材还多次要求学生在直线上描点表示一位小数和两位小数,一方面引导他们从数的顺序的角度沟通小数与整数的联系,把对小数的认识纳入到原有的认知结构之中;另一
方面,也启发他们在描点和填数的过程中不断获得更多有益的感悟。例如,在小数末尾添上或去掉0,尽管小数的大小不变,但相关小数的计数单位却变了。又如,将直线上相邻两个整数之间平均分成10份,得到的每个等分点都可用来表示一位小数;将直线上相邻两个一位小数之间平均分成10份,得到的每个等分点都可用来表示两位小数;照这样一直均分下去,还可表示三位小数、四位小数,等等。换句话说,直线上任意两点之间可以表示出无限多个小数。

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。