什么是数学模型与数学建模
1. 什么是数学模型与数学建模
简单地说:数学模型就是对实际问题的一种数学表述。
具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。
更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。
数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。
2.美国大学生数学建模竞赛的由来:
1985年在美国出现了一种叫做MCM的一年一度大大学生数学模型(1987年全称为Mathematical Competition in Modeling,1988年改全称为Mathematical Contest in Modeling,其所写均为MCM)。这并不是偶然的。在1985年以前美国只有一种大学生数学竞赛(The william Lowell Putnam mathematial Competition,简称Putman(普特南)数学竞赛),这是由美国数学协会(MAA--即Mathematical Associati
on of America的缩写)主持,于每年12月的第一个星期六分两试进行,每年一次。在国际上产生很大影响,现已成为国际性的大学生的一项著名赛事。该竞赛每年2月或3月进行。
我国自1989年首次参加这一竞赛,历届均取得优异成绩。经过数年参加美国赛表明,中国大学生在数学建模方面是有竞争力和创新联想能力的。为使这一赛事更广泛地展开,1990年先由中国工业与应用数学学会后与国家教委联合主办全国大学生数学建模竞赛(简称CMCM),该项赛事每年9月进行。
数学模型竞赛与通常的数学竞赛不同,它来自实际问题或有明确的实际背景。它的宗旨是培养大学生用数学方法解决实际问题的意识和能力,整个赛事是完成一篇包括问题的阐述分析,模型的假设和建立,计算结果及讨论的论文。通过训练和比赛,同学们不仅用数学方法解决实际问题的意识和能力有很大提高,而且在团结合作发挥集体力量攻关,以及撰写科技论文等方面将都会得到十分有益的锻炼。
3.数学建模方法
一、机理分析法从基本物理定律以及系统的结构数据来推导出模型。
1. 比例分析法--建立变量之间函数关系的最基本最常用的方法。
2. 代数方法--求解离散问题(离散的数据、符号、图形)的主要方法。
3. 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用。
4. 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式。
5. 偏微分方程--解决因变量与两个以上自变量之间的变化规律。
二、数据分析法从大量的观测数据利用统计方法建立数学模型。
1. 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。
2. 时序分析法--处理的是动态的相关数据,又称为过程统计方法。
三、仿真和其他方法
1. 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验。①离散系统仿真--有一组状态变量。②连续系统仿真--有解析表达式或系统结构图。
2. 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模
型结构。
3. 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统。
(参见:齐欢《数学模型方法》,华中理工大学出版社,1996)
四、数学建模的十大算法
(1)、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)
(2)、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)
(3)、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)
(4)、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)
建模方法
(5)、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)
(6)、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)
(7)、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)
(8)、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)(9)、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法
(10)、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MA TLAB进行处理)。
4.题型:
三个基本组成部分:
一、实际问题背景
二、若干假设条件
三、要求回答的问题
5.竞赛答卷:
提交一篇论文,基本内容和格式大致分三大部分:
一、标题、摘要部分:
1.题目--写出较确切的题目(不能只写A题、B题)。
2.摘要--200-300字,包括模型的主要特点、建模方法和主要结果。
3.内容较多时最好有个目录。
二、中心部分:
1.问题提出,问题分析。
2.模型建立:
①补充假设条件,明确概念,引进参数;
②模型形式(可有多个形式的模型);
③模型求解;
④模型性质;
3.计算方法设计和计算机实现。
4.结果分析与检验。
5.讨论--模型的优缺点,改进方向,推广新思想。
6.参考文献--注意格式。
三、附录部分:
1.计算程序,框图。
2.各种求解演算过程,计算中间结果。
3.各种图形、表格。

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。