如何做数据分析如何写好一份销售数据分析报告
首先,要有一个好的框架 跟盖房子一样,好的分析肯定是有基础有层次,有基础坚实,并且层次明了才能让阅读者一目了然,架构清晰、主次分明才能让别人容易读懂,这样才让人有读下去的欲望; 第二,每个分析都有结论,而且结论一定要明确 如果没有明确的结论那分析就不叫分析了,也失去了他本身的意义,因为你本来就是要去寻或者印证一个结论才会去做分析的,所以千万不要忘本舍果; 第三,分析结论不要太多要精 如果可以的话一个分析一个最重要的结论就好了,很多时候分析就是发现问题,如果一个一个分析能发现一个重大问题,就达到目的了,不要事事求多,宁要仙桃一口,不要烂杏一筐,精简的结论也容易让阅者接受,减少重要阅者(通常是事务繁多的领导,没有太多时间看那么多)的阅读心理门槛,如果别人看到问题太多,结论太繁,不读下去,一百个结论也等于0; 第四,分析结论一定要基于紧密严禁的数据分析推导过程 不要有猜测性的结论,太主观的东西会没有说服力,如果一个结论连你自己都没有肯定的把握就不要拿出来误导别人了; 第五,好的分析要有很强的可读性 这里是指易读度,每个人都有自己的阅读习惯和思维方式,写东西你总会按照自己的思维逻辑来写,你自己觉得很明白,那是因为整个分析过程是你做的,别人不一定如此了解,要知道阅者往往只会花10分钟以内的时间来阅读,所以要考虑你的分析阅读者是谁?他们最关心什么?你
必须站在读者的角度去写分析邮件; 第六,数据分析报告尽量图表化 这其实是第四点的补充,用图表代替大量堆砌的数字会有助于人们更形象更直观地看清楚问题和结论,当然,图表也不要太多,过多的图表一样会让人无所适从; 第七,好的分析报告一定要有逻辑性 通常要遵照:1、发现问题--2、总结问题原因--3、解决问题,这样一个流程,逻辑性强的分析报告也容易让人接受; 第八,好的分析一定是出自于了解产品的基础上的 做数据分析的产品经理本身一定要非常了解你所分析的产品的,如果你连分析的对象基本特性都不了解,分析出来的结论肯定是空中楼阁了,无根之木如何叫人信服?! 第九,好的分析一定要基于可靠的数据源 其实很多时候收集数据会占据更多的时间,包括规划定义数据、协调数据上报、让开发人员提取正确的数据或者建立良好的数据体系平台,最后才在收集的正确数据基础上做分析,既然一切都是为了到正确的结论,那么就要保证收集到的数据的正确性,否则一切都将变成为了误导别人的努力; 第十,好的分析报告一定要有解决方案和建议方案 你既然很努力地去了解了产品并在了解的基础上做了深入的分析,那么这个过程就决定了你可能比别人都更清楚第发现了问题及问题产生的原因,那么在这个基础之上基于你的知识和了解,做出的建议和结论想必也会更有意义,而且你的老板也肯定不希望你只是个会发现问题的人,请你的那份工资更多的是为了让你解决问题的; 第十一,不要害怕或回避“不良结论”
分析就是为了发现问题,并为解决问题提供决策依据的,发现产品问题也是你的价值所在,相信你的老板请你来,不是光让你来唱赞歌的,他要的也不是一个粉饰太平的工具,发现产品问题,在产品缺陷和问题造成重大失误前解决它就是你的分析的价值所在了; 第十二,不要创造太多难懂的名词 如果你的老板在看你的分析花10分钟要叫你三次过去来解释名词,那么你写出来的价值又在哪里呢,还不如你直接过去说算了,当然如果无可避免地要写一些名词,最好要有让人易懂的“名词解释”; 第十三,最后要感谢那些为你的这份分析报告付出努力做出贡献的人 包括那些为你上报或提取数据的人,那些为产品作出支持和帮助的人(如果分析的是你自己负责的产品),肯定和尊重伙伴们的工作才会赢得更多的支持和帮助,而且我想你也不是只做一锤子买卖,懂得感谢和分享成果的人才能成为一个有素养和受人尊敬的产品经理。
如何写好数据分析报告
按以下流程来写: 1、清楚业务目标 2、查看数据报表表现 3、发现问题 4、分析原因 5、提出建议 6、测试/实验 7、实施 首先要明白没有目标也就无所谓分析,其次分析的时候要注重关联,细分,以及数据的背景信息,同时可采用鱼骨分析法分析原因类型,注意的是问题的
80%可能只是20%的原因造成,出主要问题,提出建议,不要忘了做测试,有时候原因可能不是想象中的,所以需要通过测试来验证你的假设,最后如果实验结果满意就进一步具体实施,不满意再来一边。
千万不要闷头自己想,一定要测试。
如何写好数据分析报告
我认为一份好的分析报告,首先要有一个好的框架,跟盖房子一样,好的分析肯定是有基础有层次,有基础坚实,并且层次明了才能让阅读者一目了然,架构清晰、主次分明才能让别人容易读懂,这样才让人有读下去的欲望; 第二,每个分析都有结论,而且结论一定要明确,如果没有明确的结论那分析就不叫分析了,也失去了他本身的意义,因为你本来就是要去寻或者印证一个结论才会去做分析的,所以千万不要忘本舍果; 第三,分析结论不要太多要精,如果可以的话一个分析一个最重要的结论就好了,很多时候分析就是发现问题,如果一个一个分析能发现一个重大问题,就达到目的 了,不要事事求多,宁要仙桃一口,不要烂杏一筐,精简的结论也容易让阅者接受,减少重要阅者(通常是事务繁多的领导,没有太多时间看那么多)的阅读心理门 槛,如果别人看到问题太多,结论太繁,不读下去,一百个
结论也等于0; 第四、分析结论一定要基于紧密严禁的数据分析推导过程,不要有猜测性的结论,太主观的东西会没有说服力,如果一个结论连你自己都没有肯定的把握就不要拿出来误导别人了; 第五,好的分析要有很强的可读性,这里是指易读度,每个人都有自己的阅读习惯和思维方式,写东西你总会按照自己的思维逻辑来写,你自己觉得很明白,那是因 为整个分析过程是你做的,别人不一定如此了解,要知道阅者往往只会花10分钟以内的时间来阅读,所以要考虑你的分析阅读者是谁?他们最关心什么?你必须站 在读者的角度去写分析邮件; 第六,数据分析报告尽量图表化,这其实是第四点的补充,用图表代替大量堆砌的数字会有助于人们更形象更直观地看清楚问题和结论,当然,图表也不要太多,过多的图表一样会让人无所适从; 第七、好的分析报告一定要有逻辑性,通常要遵照:1、发现问题--2、总结问题原因--3、解决问题,这样一个流程,逻辑性强的分析报告也容易让人接受; 第八、好的分析一定是出自于了解产品的基础上的,做数据分析的产品经理本身一定要非常了解你所分析的产品的,如果你连分析的对象基本特性都不了解,分析出来的结论肯定是空中楼阁了,无根之木如何叫人信服?! 第九、好的分析一定要基于可靠的数据源,其实很多时候收集数据会占据更多的时间,包括规划定义数据、协调数据上报、让开发人员 提取正确的数据或者建立良好的数据体系平台,最后才在收集的正确数据基础上做分析,既然一切都是为了
到正确的结论,那么就要保证收集到的数据的正确性, 否则一切都将变成为了误导别人的努力; 第十、好的分析报告一定要有解决方案和建议方案,你既然很努力地去了解了产品并在了解的基础上做了深入的分析,那么这个过程就决定了你可能比别人都更清楚 第发现了问题及问题产生的原因,那么在这个基础之上基于你的知识和了解,做出的建议和结论想必也会更有意义,而且你的老板也肯定不希望你只是个会发现问题 的人,请你的那份工资更多的是为了让你解决问题的; 十一、不要害怕或回避“不良结论”,分析就是为了发现问题,并为解决问题提供决策依据的,发现产品问题也是你的价值所在,相信你的老板请你来,不是光让你 来唱赞歌的,他要的也不是一个粉饰太平的工具,发现产品问题,在产品缺陷和问题造成重大失误前解决它就是你的分析的价值所在了; 十二、不要创造太多难懂的名词,如果你的老板在看你的分析花10分钟要叫你三次过去来解释名词,那么你写出来的价值又在哪里呢,还不如你直接过去说算了,当然如果无可避免地要写一些名词,最好要有让人易懂的“名词解释”; 十三、最后,要感谢那些为你的这份分析报告/邮件付出努力做出贡献的人,包括那些为你上报或提取数据的人,那些为产品作出支 持和帮助的人(如果分析的是你自己负责的产品),肯定和尊重伙伴们的工作才会赢得更多的支持和帮助,而且我想你也不是只做一锤子买卖,懂得感谢和分享成果 的人才能成为一个有素养和受人尊敬的产品经理; 最后希
望每个产品经理都能有良好的数据分析能力,每次分析都能写得很出,成为优秀成功的产品经理!:)。
医疗大数据的分析和挖掘发展现状如何
如今是大数据时代,前景自然好了,据前瞻产业研究院《2016-2021年中国行业大数据市场发展前景预测与投资战略规划分析报告》显示,总的来说,医疗大数据应用主要体现在临床操作、研发、新的商业模式、付款/定价、公众健康五大领域,在这些场景中,大数据的分析和应用都将发挥巨大的作用。
医疗大数据的应用对于临床医学研究、科学管理和医疗服务模式转型发展都具有重要意义,而大数据技术的运用前景是十分光明的。
医院和医疗行业面临的大数据主要有医学影像、视频(教学、监控)及文献等非结构化数据。由于这些数据增长很快且结构复杂,给数据管理和利用带来较大的压力,存储与管理成本不断提高,数据利用困难、利用率低。除了数据数量和形态的迅速增加,医疗数据还需要越来越长的保留期。一旦存储系统的安全性出现问题,导致医疗数据丢失,医院会面临严重
不良局面。医疗大数据的应用要保证数据的全面性、准确性、实时性和使用的便捷性,要能快速运算和快速展现,要与日常工作平台紧密结合。
国人已经把健康大数据上升为国家战略,而面对“大数据”的挑战,医院必须考虑三大主要问题。
(1) 数据存储是否安全可靠?因为系统一旦出现故障,首先考验的就是数据的存储、灾备和恢复能力。如果数据不能迅速恢复,而且恢复不能到断点,则将对医院的业务、患者满意度构成直接损害。
(2) 如何提高医院运行和服务的效率?提高效率就是节省医生的时间,从而缓解医疗资源的紧张状况,在一定程度上可以帮助解决“看病难”的问题。
(3) 如何控制大数据的成本?存储架构是否合理,不仅影响医院IT系统的成本,而且关乎医院的运营成本,医疗数据激增,使医院普遍存在着较大的存储扩容压力。如今,医院的存储设备大多是由不同厂商构成的完全异构的存储系统。这些不同的存储设备利用各自不同的软件工具来进行控制和管理,这样就增加了整个系统的复杂性,使管理成本非常高。
未来,大数据必将影响医疗行业,未来医疗行业的大数据将会具体应用在:临床辅助决策,医疗质量监管,疾病预测模型,临床实验分析。其发展空间有:个人健康门户,慢病管理和健康管理,电子病历和临床质量监控,医学知识管理,临床路径和循证医学,远程医疗和移动医疗,医学研究数据仓库和共享平台,跨医疗机构协作平台。
医院财务分析范文
做下参考:
财务分析报告
本单位全称*****医院,第二名称*****医院,现开放***、****两院区,两院区采取统一管理,财务统一核算的经营方式,医院现有卫生技术人员167人,工勤人员21人,其中高级职称5人,中级职称41人。救护车4辆,小型轿车1辆,拥有固定资产2500万元,其中专业设备800万元。两院区科室开放齐全,承担县内及周边县市急救、医疗、预防任务。
一、 从动态角度分析财务状况
本年度业务收入1637万元,比06年度净增187万元,增长率为12.9%,其中:医疗收入983万元,增长276万元,增长率为39%;药品收入649万元,下降73万元,增长率为-10.1%;其他收入5万元,下降16万元;财政经常性补助收入180.50万元,增加42.50万元,主要是06年工资套改增补工资追加经费指标,财政专项补助收入7万元,比上年减少11万元。业务支出1711万元,增加231万元,增加率为15.62%,相对于业务增长率上升了2.72个百分点,其中,工资福利支出460万元,增加123万元,增加率为36.49%,主要是一次性发放06年工资套改增资所致;商品和服务支出1164万元,增加137万元,增加率为13.33%;对个人和家庭的补助支出72万元,增加7万元,增加率为10.63%;其他支出14万元,减少36万元,增加率为-71.8%;财政专项补助支出7万元。
二、 依据年终财务报表数据从静态角度分析财务状况
收入构成比例:业务收入占总收入89.5%,财政补助收入占总收入10.5%,其中医疗收入占业务收入比60.24%,药品收入占业务收入比39.76%,药品收入比重大幅下降,主要是药品价格下调所致;支出构成比例:工资福利支出占总支出比26.88%;商品和服务支出占总支出比68.06%;(其中,专用材料费占总支出比48%)对个人和家庭的补助支出占总支出比4.23%;其他支出占总支出比0.83%。
偿债能力:资产负债率34.54%,流动比率0.78,速动比率0.7。
综合以上分析,从动态角度收入、支出增长比来看,因受药品降价及药品招标品种扩大等宏观政策的影响,药品收入大幅下降;因全年门诊人次、住院病人人数增加及医疗服务质量提高,医疗收入有较大增长。因政策性增资及高河新院区的对外营业,致使工资福利支出和商品服务支出大幅度提高,总支出较总收入相比上升了2.78个百分点,造成本年度结余比去年减少了10万元;从静态角度的偿债能力分析来看,资产负债率上升了8.21个百分点,而流动比率与速动比率分别下降了1.1和1.02。以上迹象表明,偿债能力减弱,财务风险有所增加,另因**新院区建设的需要,医院需进一步筹集资金以满足建设资金的需要,经济压力较大。
********** 医 院
二 ○ ○ 八 年一月七日
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论