《勾股定理逆定理》观评课报告
第一篇:《勾股定理逆定理》观评课报告
《勾股定理逆定理》观评课报告
《数学课程标准》明确指出:“有效的数学活动不能单纯地依赖于模仿与记忆,学生学习数学的重要方式是动手实践、自主探索与合作交流,以促进学生自主、全面、可持续发展”。数学教学是数学活动的教学,是师生之间、学生之间相互交往、积极互动、共同发展的过程,是“沟通”与“合作”的过程。本堂老师的课充分体现了新课标对老师和学生的新要求,是一节非常优秀的课,值得我学习。
一、本节课老师用视频播放勾股定理的历史,介绍周公向商高请教数学知识时的对话,介绍勾股定理的历史,让学生在感到“有趣”、“有意思”的状态下进入学习过程。由勾股定理的历史自然地引入了课题,让学生亲身体验到数学知识来源于实践,从而激发学生的学习积极性。
二、在定理的探索中,为学生提供了大量的操作、思考和交流的学习机会,通过 “观察--探究--交流--展示”发现勾股定理。层层深入,逐步体会数学知识的产生、形成、发展与应用过程。通过
引导学生在具体操作活动中进行独立思考,鼓励学生发表自己的见解,学生自主地发现问题、探索问题、获得结论的学习方式,有利于学生在活动中思考,在思考中活动。本节课放手让学生去探究,利用课件的直观性,经历用数格子的办法探索勾股定理的过程,让学生自己动手拼出图形,用图形去验证,进一步发展学生的合情推理意识,主动探究的习惯,逐步体会数学与现实生活的紧密联系,让学生经历了数学知识的形成过程,感受了从“形”到“数”这一认知过程,有助于培养学生的合情推理能力及数形结合思想。让学生走上讲台展示成果,在学生展示的过程中,发展了学生的思维,有助于教师更好地发现学生对勾股定理的理解程度,便于对课堂作出调控。
三、从上课情况看,课堂气氛活跃,学生能够认真听课,师生互动好,对于教师提出的问题及课堂练习题都能很好的回答出来。通过探究活动,调动学生的积极性,激发学生的探求新知的欲望。给学生充分的时间与空间讨论、交流、推理、发现,鼓励学生发表自己的见解,感受合作的重要性。同时培养学生的操作能力,也为以后探究图形的性质积累了经验。
四、梯度练习,层层落实目标。勾股定理能解决生活中许多与直角三角形有关的问题,刘老师先让学生直接应用定理,然后解决蚂蚁经过草莓并回到窝的最短路径问题。引导学生学会
发现、构建直角三角形,从而利用勾股定理解决实际问题,让学生再次经历从“一般”到“特殊”的过程。同时也构筑了利用勾股定理解题的数学模型。
从老师这堂课中,我学习到了很多东西,这对于我今后的教学是很有帮助的。我觉得在数学教学中,作为老师的我们要以自信、乐观的态度对待我们的学生,感染我们的学生,教学准备要充分,吃透教材,对待教学要一丝不苟。在教学中,要勇于实践,大胆创新。总之,整堂课体现了教师良好的专业素养,思路清晰,目标明确,过程流畅。是一堂值得我学习的好课!
第二篇:《勾股定理》观评课报告
《勾股定理》观评课报告
《数学课程标准》明确指出:“有效的数学活动不能单纯地依赖于模仿与记忆,学生学习数学的重要方式是动手实践、自主探索与合作交流,以促进学生自主、全面、可持续发展”。数学教学是数学活动的教学,是师生之间、学生之间相互交往、积极互动、共同发展的过程,是“沟通”与“合作”的过程。本节课课充分体现了新课标对老师和学生的新要求,是一节非常优秀的课,值得我学习。
一、本节课老师用视频播放勾股定理的历史,介绍周公向商高请教数学知识时的对话,介绍勾股定理的历史,让学生在感到“有趣”、“有意思”的状态下进入学习过程。由勾股定理的历史自然地引入了课题,让学生亲身体验到数学知识来源于实践,从而激发学生的学习积极性。
二、在定理的探索中,为学生提供了大量的操作、思考和交流的学习机会,通过 “观察--探究--交流--展示”发现勾股定理。层层深入,逐步体会数学知识的产生、形成、发展与应用过程。通过引导学生在具体操作活动中进行独立思考,鼓励学生发表自己的见解,学生自主地发现问题、探索问题、获得结论的学习方式,有利于学生在活动中思考,在思考中活动。本节课放手让学生去探究,利用课件的直观性,经历用数格子的办法探索勾股定理的过程,让学生自己动手拼出图形,用图形去验证,进一步发展学生的合情推理意识,主动探究的习惯,逐步体会数学与现实生活的紧密联系,让学生经历了数学知识的形成过程,感受了从“形”到“数”这一认知过程,有助于培养学生的合情推理能力及数形结合思想。让学生走上讲台展示成果,在学生展示的过程中,发展了学生的思维,有助于教师更好地发现学生对勾股定理的理解程度,便于对课堂作出调控。
三、从上课情况看,课堂气氛活跃,学生能够认真听课,师生互动好,对于教师提出的问题
及课堂练习题都能很好的回答出来。通过探究活动,调动学生的积极性,激发学生的探求新知的欲望。给学生充分的时间与空间讨论、交流、推理、发现,鼓励学生发表自己的见解,感受合作的重要性。同时培养学生的操作能力,也为以后探究图形的性质积累了经验。
四、梯度练习,层层落实目标。勾股定理能解决生活中许多与直角三角形有关的问题,刘老师先让学生直接应用定理,然后解决蚂蚁经过草莓并回到窝的最短路径问题。引导学生学会发现、构建直角三角形,从而利用勾股定理解决实际问题,让学生再次经历从“一般”到“特殊”的过程。同时也构筑了利用勾股定理解题的数学模型。
从这堂课中,我学习到了很多东西,这对于我今后的教学是很有帮助的。我觉得在数学教学中,作为老师的我们要以自信、乐观的态度对待我们的学生,感染我们的学生,教学准备要充分,吃透教材,对待教学要一丝不苟。在教学中,要勇于实践,大胆创新。总之,整堂课体现了教师良好的专业素养,思路清晰,目标明确,过程流畅。是一堂值得我学习的好课!
第三篇:勾股定理逆定理说课稿
勾股定理的逆定理说课稿
一、教材分析
(一)、本节课在教材中的地位作用
“勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一。课标要求学生必须掌握。
(二)、教学目标
1、知识技能:1理解并会证明勾股定理的逆定理;
2会应用勾股定理的逆定理判定一个三角形是否为直角三角形;
3知道什么叫勾股数,记住一些觉见的勾股数.2、过程与方法:通过对勾股定理的逆定理的探索和证明,经历知识的发生,发展与形成的过程,体验“数形结合”方法的应用。
3、情感、态度价值观 培养数学思维以及合情推理意识,感悟勾股定理和逆定理的应用价值。渗透与他人交流、合作的意识和探究精神,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一的关系。
(三)、学情分析:
勾股定理的历史尽管已到初二下学期学生知识增多,能力增强,但思维的局限性还很大,能力也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,这样就确定了本节课的重点、难点。教学重点:勾股定理逆定理的应用 教学难点:勾股定理逆定理的证明
二、教学过程
本节课的设计原则是:使学生在动手操作的基础上和合作交流的良好氛围中,通过巧妙而自然地在学生的认识结构与几何知识结构之间筑了一个信息流通渠道,进而达到完善学生的数学认识结构的目的。
(一)复习回顾
复习回顾与直角三角形、勾股定理有关的内容,建立新旧知识之间的联系。
(二)创设问题情境
一开课我就提出了与本节课关系密切、学生用现有的知识可探索却又解决不好的问题,去提示本节课的探究宗旨。(演示)古代埃及人把一根长绳打上等距离的13个结,然后用桩钉如图那样的三角形,便得到一个直角三角形。这是为什么?„„。这个问题一出现马上激起学生已有知识与待研究知识的认识冲突,引起了学生的重视,激发了学生的兴趣,因而全身心地投入到学习中来,创造了我要学的气氛,同时也说明了几何知识来源于实践,不失时机地让学生感到数学就在身边。
(三)学生在教师的指导下尝试解决问题,总结规律(包括难点突破)
因为几何来源于现实生活,对初二学生来说选择适当的时机,让他们从个体实践经验中开始学习,可以提高学习的主动性和参与意识,所以勾股定理的逆定理不是由教师直接给出的,而是让学生通过动手画图在具体的实践中观察满足条件的三角形直观感觉上是什么三角形,
再用直角三角形插入去验证猜想。
这样设计是因为勾股定理逆定理的证明方法是学生第一次见到,它要求按照已知条件作一个直角三角形,根据学生的智能状况学生是不容易想到的,为了突破这个难点,我让学生动手画出了一个两直角边与所给三角形两条较小边相等的直角三角形,通过操作验证两三角形全等,从而不仅显示了符合条件的三角形是直角三角形,还孕育了辅助线的添法,为后面进行逻辑推理论证提供了直观的数学模型。
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论