2022年中考数学专题复习函数与实际问题
函数与实际问题
1.某中学为了预防流行性感冒,对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量ymg)与时间xmin)成正比例.药物燃烧后,yx成反比例(如图所示),现测得药物6min燃毕,此时室内空气中每立方米的含药量为4mg
(1)写出药物燃烧前后,yx之间的函数表达式;
(2)研究表明,当空气中每立方米的含药量低于1.6mg时学生方可进教室,那么从消毒开始,至少需要经过多少分钟,学生方能回到教室?
(3)研究表明,当空气中每立方米的含药量不低于2mg且持续时间不低于9min时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?
2.为预防传染病,某校定期对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量ymg)与药物在空气中的持续时间xm)成正比例;燃烧后,yx成反比例(如图所示).现测得药物10分钟燃完,此时教室内每立方米空气含药量为8mg.根据以上信息解答下列问题:
(1)分别求出药物燃烧时及燃烧后y关于x的函数表达式
(2)当每立方米空气中的含药量低于1.6mg时,对人体方能无毒害作用,那么从消毒开始,在哪个时段消毒人员不能停留在教室里?
(3)当室内空气中的含药量每立方米不低于3.2mg的持续时间超过20分钟,才能有效杀灭某种传染病毒.试判断此次消毒是否有效,并说明理由.
3.某公司用100万元研发一种市场急需电子产品,已于当年投入生产并销售,已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y(万件)与销售价格x(元/件)的关系如图所示,其中AB为反比例函数图象的一部分,设公司销售这种电子产品的年利润为s(万元).
(1)请求出y(万件)与x(元/件)的函数表达式;
(2)求出第一年这种电子产品的年利润s(万元)与x(元/件)的函数表达式,并求出第一年年利润的最大值.
4.制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800℃,然后停止煅烧进行锻造操作,经过8min时,材料温度降为600℃.煅烧时温度y(℃)与时间xmin)成一次函数关系;锻造时,温度y(℃)与时间xmin)成反比例函数关系(如图),已知该材料初始温度是26℃
(1)分别求出材料煅烧和锻造时yx的函数关系式,并且写出自变量x的取值范围;(2)根据工艺要求,当材料温度低于400℃时,须停止操作.那么锻造的操作时间有多长?
5.小成利用暑期参加社会实践,在妈妈的帮助下,利用社区提供的免费摊点卖玩具,已知小成所有玩具的进价均2元/个,在销售过程中发现:每天玩具销售量y件与销售价格x元/件的关系如图所示,其中AB段为反比例函数图象的一部分,BC段为一次函数图象的一部分,设小成销售这种玩具的日利润为w元.
高速免费时间表2022
(1)根据图象,求出yx之间的函数关系式;
(2)若小成某天将价格定为超过4元(x>4),且销售利润为54元,求该天玩具的销售价格.
6.某种饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,这时水温y(℃)和通电时间xmin)成反比例关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温为20℃,接通电源后,水温和时间的关系如图所示,回答下列问题:
(1)分别求出当0≤x≤8和8<xa时,yx之间的函数关系式;
(2)求出图中a的值.
7.商场购进某种新商品的每件进价为120元,在试销期间发现,当每件商品的售价为130元时,每天可销售70件;当每件商品的售价高于130元时,每涨价1元,日销售量就减少1件,据此规律,请回答下列问题.
(1)当每件商品的售价为140元时.每天可销售      件商品,商场每天可盈利      元;
(2)设销售价定为x元时,商品每天可销售       件,每件盈利       元;
(3)在销售正常的情况下,每件商品的销售价定为多少时,商场每天盈利达到1500元;
(4)这次活动中,1500元是最高日盈利吗?若是,请说明理由;若不是,请试求最高盈利.
8.某超市销售一种饮料,平均每天可售出100箱,每箱利润为120元,为了扩大销售,尽快减少库存,超市准备适当降价,据测算,若每箱降价2元,则每天多售出4箱.

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。