2024届江西省宜春市丰城四中学中考数学四模试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()
A.70°B.60°C.55°D.50°
2.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是()
A.
1
10
B.
1
9
C.
1
6
D.
1
5
3.如图,直线AB与直线CD相交于点O,E是∠COB内一点,且OE⊥AB,∠AOC=35°,则∠EOD的度数是()
A.155°B.145°C.135°D.125°
4.已知点A、B、C是直径为6cm的⊙O上的点,且AB=3cm,AC=32cm,则∠BAC的度数为()A.15°B.75°或15°C.105°或15°D.75°或105°
5.如图:A、B、C、D四点在一条直线上,若AB=CD,下列各式表示线段AC错误的是( )
A.AC=AD﹣CD B.AC=AB+BC
C.AC=BD﹣AB D.AC=AD﹣AB
6.为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民2015年4月份用电量的调查结果:
居民(户) 1 2 3 4
月用电量(度/户)30 42 50 51 那么关于这10户居民月用电量(单位:度),下列说法错误的是()
A.中位数是50 B.众数是51 C.方差是42 D.极差是21
7.tan45º的值为()
A.1
2
B.1 C.
2
2
D.2
8.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是() A.8 B.9 C.10 D.12
9.通州区大运河森林公园占地面积10700亩,是北京规模最大的滨河森林公园,将10700用科学记数法表示为()
A.10.7×104B.1.07×105C.1.7×104D.1.07×104
10.实数a在数轴上对应点的位置如图所示,把a,﹣a,a2按照从小到大的顺序排列,正确的是()
A.﹣a<a<a2B.a<﹣a<a2C.﹣a<a2<a D.a<a2<﹣a
11.关于x的不等式组
312(1)
x m
x x
-<
⎧
⎨
->-
⎩
无解,那么m的取值范围为( )
A.m≤-1 B.m<-1 C.-1<m≤0D.-1≤m<0
12.实数a,b,c在数轴上对应点的位置大致如图所示,O为原点,则下列关系式正确的是()
A.a﹣c<b﹣c B.|a﹣b|=a﹣b C.ac>bc D.﹣b<﹣c
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.数学综合实践课,老师要求同学们利用直径为6cm的圆形纸片剪出一个如图所示的展开图,再将它沿虚线折叠成一个无盖的正方体形盒子(接缝处忽略不计).若要求折出的盒子体积最大,则正方体的棱长等于________cm.
14.如图,已知反比例函数y=(x>0)的图象经过Rt△OAB斜边OB的中点C,且与直角边AB交于点D,连接OD,若点B的坐标为(2,3),则△OAD的面积为_____.
15.如图,在菱形ABCD中,DE⊥AB于点E,cosA=3
5
,BE=4,则tan∠DBE的值是_____.
16.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD=_____度.
17.如图,在矩形ABCD中,E、F分别是AD、CD的中点,沿着BE将△ABE折叠,点A刚好落在BF上,若AB=2,则AD=________.
18.某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏本20%,则本次出售中商场是_____(请写出盈利或亏损)_____元.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,小明今年国庆节到青城山游玩,乘坐缆车,当登山缆车的吊箱经过点A到达点B时,它经过了200m,缆车行驶的路线与水平夹角∠α=16°,当缆车继续由点B到达点D时,它又走过了200m,缆车由点B到点D的行驶路线与水平面夹角∠β=42°,求缆车从点A到点D垂直上升的距离.(结果保留整数)(参考数据:sin16°≈0.27,
cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)
20.(6分)如图所示,一次函数y=kx+b与反比例函数y=m
x
的图象交于A(2,4),B(﹣4,n)两点.分别求出一
次函数与反比例函数的表达式;过点B作BC⊥x轴,垂足为点C,连接AC,求△ACB的面积.
21.(6分)若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数.
(1)请画出树状图并写出所有可能得到的三位数;
(2)甲、乙二人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜.你认为这个游戏公平吗?试说明理由.
22.(8分)均衡化验收以来,乐陵每个学校都高楼林立,校园环境美如画,软件、硬件等设施齐全,小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走6 米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°,已如A点离地面的高度AB=4米,∠BCA=30°,且B、C、D三点在同一直线上.
(1)求树DE的高度;
(2)求食堂MN的高度.
23.(8分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:
今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?
译文为:
现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?
请解答上述问题.
24.(10分)已知:如图,在△ABC中,AB=13,AC=8,cos∠BAC=
5
13
,BD⊥AC,垂足为点D,E是BD的中
点,联结AE并延长,交边BC于点F.(1)求∠EAD的余切值;
(2)求BF
CF
的值.
25.(10分)计算:2-1+20160-3tan30°+|-3|
26.(12分)如图,△ABC中,点D在边AB上,满足∠ACD=∠ABC,若AC=3,AD=1,求DB的长.
27.(12分)如图,△ABC是等腰直角三角形,且AC=BC,P是△ABC外接圆⊙O上的一动点(点P与点C位于直线AB的异侧)连接AP、BP,延长AP到D,使PD=PB,连接BD.
(1)求证:PC∥BD;
中考分数怎么查?(2)若⊙O的半径为2,∠ABP=60°,求CP的长;
(3)随着点P的运动,PA PB
PC
的值是否会发生变化,若变化,请说明理由;若不变,请给出证明.
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论